
Aligning Early and Late Requirements Through
Ontologies

Ricardo Ramalho and Juliana B.S. França[Supervisor]

Instituto de Computação, Universidade Federal do Rio de Janeiro, RJ, Brasil
{ricardorlj,julianabsf}@ic.ufrj.com

Abstract. The misalignment between early and late requirements in
software development represents a significant challenge, directly impact-
ing the quality of the final software product. The inconsistency between
the stakeholders’ initial vision and the technical implementation can re-
sult in systems that do not meet customer expectations, leading to re-
work, increased costs, and dissatisfaction. Early requirements represent
the stakeholders’ needs, while late requirements are refined and formal-
ized to guide technical development. The transition between these phases
is critical, and misalignments can lead to misinterpretations and inade-
quate final products. To mitigate this issue, the study proposes the use
of ontologies as a tool to structure and formalize the knowledge related
to requirements, facilitating project communication and documentation.
Aspects of the main ontology development methodologies are analyzed,
and the reuse of an existing ontology that fits the purposes of this study
is addressed. This research presents the formalization of these concepts,
indicating that the application of ontologies in a project’s early require-
ments can positively contribute to the construction of systems adherent
to stakeholder needs. As a future perspective, the evolution of the sug-
gested adaptations into a formalized ontology is proposed, along with
the introduction of goal-oriented approaches.

Keywords: Ontology, Requirements Engineering, Early Requirements,
Late Requirements.

1 Introduction

Requirements are the foundation of any project, defining what stakeholders need
from a potentially new system and what the system must do to meet that need.
With the increasing complexity of software development, the importance of ef-
fective requirements engineering becomes evident [8]. In large software projects,
requirements must initially be defined abstractly to avoid predefined solutions
and allow competition among suppliers. After contracting, a detailed system def-
inition must be developed for client validation, integrating both phases into a
single system requirements document [6].

This divergence in the interpretation of what constitutes a requirement can
lead to misunderstandings and inconsistencies during the evolution of require-
ments throughout the engineering process. A definition of requirements must



2 R. Ramalho, J. França

be broad and take into account various factors present in this complex process.
Among these factors are the needs related to the requirements, which must be
met by the product built based on them. The term "requirement" can also apply
to the context in which real characteristics are the object of evaluation of a con-
crete product, based on conditions that this product must meet. Another way to
view requirements is through the construction of a document that materializes
the desired system features; in this sense, a requirement is a specification present
in the document [27].

All three aspects of the requirements definition mentioned above are individ-
ually characterized in ISO/IEC/IEEE 24765:2017 [15]. However, this standard
also expresses a fourth definition, which encompasses and complements these
three aspects: requirement is a condition or capability that must be met or pos-
sessed by a system, system component, product, or service to satisfy an agree-
ment, standard, specification, or other formally imposed documents. Require-
ments include the quantified and documented needs, wants, and expectations of
the sponsor, customer, and other stakeholders.

In this context, the research proposes the use of ontologies as a tool to mit-
igate the misalignment between early and late requirements. The research is
structured as follows: Section 2 discusses works related to the present research,
involving studies that address early and late requirements and ontological ap-
proaches that operate on these phases. Sections 3 and 4 discuss the concepts
of early and late requirements, and then the challenge of their misalignment is
highlighted. Section 5 introduces the concept of ontologies and their application
in Software Engineering, showing how they can be used to structure knowledge
related to requirements. We then propose and exemplify the reuse of an ontology
created to assist requirements traceability in the context of agile development.

In summary, this research addresses a critical problem in software develop-
ment—requirements misalignment—and proposes an ontology-based solution.
By structuring and formalizing knowledge related to requirements, ontologies
can play a crucial role in ensuring that developed systems fully meet stakehold-
ers’ needs, reducing costs, and improving the quality of the final product.

2 Related Work

Vingerhoets et al. [28] explored the use of i* and UML in Blockchain-Oriented
Software Engineering, showing that i* is effective for early requirements and
UML for late requirements. While not ontological, their work highlights the
importance of distinguishing and managing the transition between requirements
phases—a challenge this study addresses using ontologies.

Singh et al. [24] addressed the transition between early and late requirements
in the context of Data Warehouse development, highlighting the lack of clear
distinction in existing approaches. They proposed an agent-oriented extension
of the GDI (Goal-Decision- Information) model to bridge these phases. Unlike
their domain-specific method, this study adopts a formal and generic approach
using ontologies to align early and late requirements.



Aligning Early and Late Requirements Through Ontologies 3

Fernandes et al. [11] proposed using the Tropos methodology to model Com-
petency Questions (CQs) in the early stages of ontology engineering, drawing
parallels between CQs and system requirements. Their approach emphasizes the
use of early and late requirements phases to connect organizational objectives
to ontology scope, reinforcing the value of methodological rigor and phase dis-
tinction—key concerns also addressed in this study.

3 Early Requirements

Before drafting any requirements, it is necessary to understand the whys that
justify the system under development [31]. In this context, early requirements
emerge, connecting the proposed system to organizational goals, its purpose,
available alternatives, and the implications of these choices for stakeholders [24].

The early requirements approach involves identifying all relevant agents in
the system and their respective goals. The result of this process should be an
organizational model that represents these pairs [4] [10]. Recently, Kadakolmath
and Ramu [17] described early requirements as follows:

Early-phase requirements focus on the WHY dimension of requirements
engineering. That is, they focus on modeling and analysis of the envi-
ronment of the software system. Also, they illustrate how stakeholders’
needs, motivations, and complex relationships may be addressed by mul-
tiple alternatives.

Since this is an initial stage, the information is often in a raw state, requiring
greater analytical effort. With the evolution of software development, specific
tools have been developed to address this challenge, many of which focus on
graphical support to facilitate the visualization of information collected in the
early stages of projects [4, 9, 17].

Early requirements can thus be defined as the set of interests and needs of the
system’s stakeholders. Through continuous interaction with these stakeholders,
requirements are elicited, recorded, and refined until they are ready to form a
document that fully reflects these interests. After this stage, the transition to the
final requirements document takes place, serving as the foundation for project
development. During this phase, the requirements—now referred to as late re-
quirements—are detailed and organized to ensure clarity for the development
team, ensuring that the requesters’ needs are properly understood and met.

4 Late Requirements

In an ideal scenario, the artifact generated from stakeholder interaction would be
sufficient to initiate project development. However, in practice, this reality is sig-
nificantly more complex and challenging. The misalignment of objectives among
stakeholders makes negotiation indispensable for handling contradictory require-
ments [1]. During this process, the goal is to draft a requirements document in



4 R. Ramalho, J. França

natural language to facilitate communication. However, this approach can intro-
duce ambiguities, allowing different actors to interpret the same requirement in
different ways.

To mitigate the problems arising from this initial stage, Lamsweerde [18]
proposes a specification and documentation phase, which follows a structured
process, represented in Figure 1:

Fig. 1. Specification and Documentation Process

The Requirements Document, the main artifact resulting from this stage,
presents a coherent structure designed to precisely specify the early requirements.
This specification eliminates ambiguities, limits the project scope, and serves
as the foundation for technical development. In this context, late requirements
emerge as a refined and structured set of specifications, documented to provide
clear instructions to those responsible for the project’s development.

A project developed based on the Requirements Document should fully meet
the initial interests and desires of stakeholders. To achieve this, it is essential to
avoid distortions between early and late requirements, ensuring a smooth transi-
tion between these phases. This alignment between the two types of requirements
has been widely studied in recent years in the field of software engineering [28].

5 Requirements Misalignment

Although the roles of the early and late phases in requirements engineering
seem well defined, the transition between these stages has been widely debated
over the past three decades in software development. This process is challenging
because early requirements, often expressed ambiguously and informally, need to
be refined and formalized to serve as a solid foundation for the system’s technical
development [32]. An illustration of the potential impact of this misalignment is
presented by Young [30] in the following scenario:

It’s your worst nightmare. A customer walks into your office, sits down,
looks you straight in the eye, and says, “I know you think you understand
what I said, but what you don’t understand is what I said is not what
I meant.” Invariably, this happens late in the project, after deadline



Aligning Early and Late Requirements Through Ontologies 5

commitments have been made, reputations are on the line, and serious
money is at stake.

Problems arising from requirements misalignment, when identified, often re-
quire corrections, the cost of which varies depending on the stage of development
in which they are detected [23].

Fig. 2. Relative cost of error correction by software development stage [3], adapted.

An analysis of Figure 2 reveals the exponential increase in costs associ-
ated with fixing errors as the project progresses. This observation reinforces
the importance of effective alignment between early and late requirements. To
ensure that stakeholder interests are adequately addressed, it is crucial that
early requirements are fully incorporated into late requirements. Recent litera-
ture demonstrates that the problem still persists, causing damage to the indus-
try [17,19,26,28]. Furthermore, it is essential to prevent the introduction of late
requirements that are not linked to an initial requirement, thereby promoting a
more objective and efficient project.

Thus, a tool that enables effective alignment between early and late require-
ments could ensure that these conditions are met, minimizing costs and maxi-
mizing the quality of the final product.

6 Ontologies

Conceptual modeling was recognized as important for the development of infor-
mation systems as early as the 1960s [29]. Serving as an explicit specification
of conceptualization [13], ontologies have been a growing area of interest in in-
formation science research [2]. Ontology is a term originating from philosophy
that defines a systematic representation of existence. In an ontology, a universe



6 R. Ramalho, J. França

can be explicitly represented by entities, their relationships, and governing rules,
which makes the represented universe a measurable and more easily analyzable
object [13].

In the 1990s, Guarino [14] introduced the term "Ontology-Driven Information
Systems" to describe information systems that formally use ontologies. Later,
Jurisica et al. [16] proposed using ontologies for knowledge management, high-
lighting their benefits in structuring knowledge and improving interoperabil-
ity between systems. Ontologies help standardize concepts, reduce subjectivity,
and improve communication. Beyond interoperability, they also enhance user-
database interactions by enabling more intuitive and user-focused searches [21].

6.1 Ontology for requirements alignment

As discussed in Sections 3 and 5, misalignment arises from poor management of
abstract initial requirements as they evolve into late requirements. Ontologies
support the formalization and structuring of requirements, enabling analysis of
their relationships to identify unmet initial demands or unexpected late-stage
additions, thus helping to reduce misalignment.

The process of building ontologies in software engineering has proven to be
more of an artistic endeavor than a methodological one [25]. A study conducted
by Cardoso in 2007 [5], showed that more than half of the participants did not
use any methodology. By using a methodology focused on ontology construc-
tion, common consistency errors in practice—such as missing or overlapping
concepts, maintenance difficulties, and lack of standardization—are mitigated.
Analyzing the methodologies present in previous studies [5] [25] [12], we observe
that the reuse analysis step is present in several methodologies. Aiming to en-
hance requirements traceability in agile software development, Murtazina and
Avdeenko [22] presented an ontology-based approach. They developed a formal
knowledge representation using the Web Ontology Language (OWL) to facilitate
this traceability.

OWL (Web Ontology Language) is a description logic-based language used
to formally represent knowledge in ontologies, enabling automatic inference and
consistency checking [20]. It has been widely applied in requirements engineering,
including in half of the 66 studies reviewed by Dermeval et al. [7]. In this study,
OWL is suitable for aligning early and late requirements, as it supports the
formal definition of requirement types and relationships. Its compatibility with
reasoners like HermiT allows for the inference of refinement and traceability
links, aiding in the detection of inconsistencies and alignment gaps.

7 Reusing and Extending Ontology

7.1 Reuse Justification

The ontology proposed by Murtazina and Avdeenko is suitable for the present
study for several technical and conceptual reasons that meet the objective of



Aligning Early and Late Requirements Through Ontologies 7

aligning early and late requirements through a formal ontological representa-
tion. The ontology is built in OWL and implemented in the Protégé tool with
support for the previously mentioned HermiT reasoner, which allows not only
the formal definition of concepts and relations but also the automatic inference
of connections between requirements and artifacts. This capability is essential
in a study whose focus is to establish and verify semantic coherence between
requirements from different phases.

Furthermore, the analyzed ontology already includes a rich structure of con-
cepts relevant to requirements engineering, such as Requirement, RequirementsArte-
fact, Stakeholder, TestType, Task, ProductFeature, among others, which reduces
the effort of modeling from scratch and allows for the reuse and extension of
existing concepts. The ontology also introduces properties like traceFrom and
traceTo, with subproperties such as refines, isPartOf, isTestedBy, and hasSource,
which are directly applicable to the task of aligning early requirements (e.g.,
strategic objectives or stakeholder intentions) with late requirements (such as
specific functionalities or acceptance criteria. This alignment can be evaluated
using metrics that assess the extent to which early requirements are reflected
in late requirements, as well as the proportion of late requirements that are
demonstrably derived from early-stage specifications.

8 Example Scenario

To illustrate the reuse and extension of the ontology proposed by Murtazina and
Avdeenko [22], we present a practical scenario involving the development of a
Course Management System (CMS) for a university. This system aims to support
professors, students, and administrators in managing courses, enrollments, and
assessments.

8.1 Early and Late Requirements

During the elicitation phase, stakeholders expressed several high-level goals,
which we classify as early requirements (ERs) in Section 3:

– ER1: Reduce manual effort in course registration.
– ER2: Enable professors to manage course content and grades easily.
– ER3: Improve student satisfaction through better access to course informa-

tion.

From these, we derive late requirements (LRs) that represent concrete system
functionalities:

– LR1 (from ER1): The system shall allow students to register for courses
online via a web interface.

– LR2 (from ER2): Professors shall be able to upload course materials and
input grades into the system.

– LR3 (from ER3): Students shall receive automatic notifications when course
materials are updated.



8 R. Ramalho, J. França

8.2 Ontology Reuse and Extension

The original ontology already provides a foundation with the Requirement class
and properties such as traceFrom, traceTo, and refines, which are suitable
for establishing traceability. To adapt the ontology for aligning early and late
requirements, we sugest the introduction of the following extensions:

– Subclasses of Requirement: EarlyRequirement and LateRequirement.
– A new object property: isDerivedFrom, to link LateRequirement instances

to their corresponding EarlyRequirement.
– A datatype property: requirementPhase, with values "early" and "late",

to annotate the abstraction level.

8.3 Formal Representation in OWL

Below is a simplified fragment of how the requirements and their relationships
can be represented in OWL syntax:

:ER1 rdf:type :EarlyRequirement ;
:description "Reduce manual effort in course registration" .

:LR1 rdf:type :LateRequirement ;
:description "Enable online student registration via web interface" ;
:isDerivedFrom :ER1 .

:requirementPhase a owl:DatatypeProperty ;
rdfs:domain :Requirement ;
rdfs:range xsd:string .

:ER1 :requirementPhase "early" .
:LR1 :requirementPhase "late" .

This example demonstrates how reusing and extending an existing ontol-
ogy facilitates the semantic alignment of requirements across abstraction levels,
while maintaining the benefits of formal reasoning and traceability in software
engineering.

9 Conclusion

This study addressed the challenges of requirements misalignment, emphasizing
how poor communication can lead to failures in the final product. Ontologies
emerge as a promising alternative for structuring and formalizing knowledge
in Requirements Engineering, promoting traceability and coherence. The reuse
of the ontology by Murtazina and Avdeenko was suggested for constructing an
ontology that addresses this problem, with the necessary modifications to ensure
alignment between requirements.

The use of ontologies enables the creation of more precise conceptual mod-
els, facilitating the integration between early and late requirements. This con-
tributes to reducing ambiguities and improving communication among stake-
holders. While the reuse and extension of the selected ontology shows promise,



Aligning Early and Late Requirements Through Ontologies 9

further validation through case studies or tool implementation is needed to as-
sess scalability and real-world applicability. As future work, we propose the de-
velopment of an ontology capable of establishing links between early and late
requirements, while also incorporating goal-oriented approaches, such as i* and
Tropos.

References

1. Ahmad, S.: Negotiation in the requirements elicitation and analysis process. In:
19th Australian Conference on Software Engineering (aswec 2008). pp. 683–689
(2008)

2. Almeida, M.B., de Oliveira, V.N.P., Coelho, K.C.: Estudo exploratório sobre on-
tologias aplicadas a modelos de sistemas de informação: perspectivas de pesquisa
em ciência da informação. Encontros Bibli: revista eletrônica de biblioteconomia e
ciência da informação 15(30), 32–56 (2010)

3. Boehm, B.W.: Software engineering economics. Springer (2002)
4. Brinkkemper, J., Solvberg, A.: Tropos: A framework for requirements-driven soft-

ware development. Info. Syst. Engg.: State Art Res. Themes 1, 261 (2000)
5. Cardoso, J.: The semantic web vision: Where are we? IEEE Intelligent systems

22(5), 84–88 (2007)
6. Davis, A.M.: Software requirements: objects, functions, and states. Prentice-Hall,

Inc. (1993)
7. Dermeval, D., Vilela, J., Bittencourt, I.I., Castro, J., Isotani, S., Brito, P.: A sys-

tematic review on the use of ontologies in requirements engineering. In: 2014 brazil-
ian symposium on software engineering. pp. 1–10. IEEE (2014)

8. Dick, J., Hull, E., Jackson, K.: Requirements engineering. Springer (2017)
9. Dubois, E., Yu, E., Petit, M.: From early to late formal requirements: a process-

control case study. In: Proceedings Ninth International Workshop on Software
Specification and Design. pp. 34–42 (1998)

10. ElSayed, I.A., Ezz, Z., Nasr, E.: Goal modeling techniques in requirements engi-
neering: A systematic literature review. J. Comput. Sci. 13(9), 430–439 (2017)

11. Fernandes, P.C.B., Guizzardi, R.S., Guizzardi, G.: Using goal modeling to capture
competency questions in ontology-based systems. Journal of Information and Data
Management 2(3), 527–527 (2011)

12. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: with
examples from the areas of Knowledge Management, e-Commerce and the Semantic
Web. Springer Science & Business Media (2006)

13. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl-
edge Acquisition 5(2), 199–220 (1993)

14. Guarino, N.: Formal ontology in information systems: Proceedings of the first in-
ternational conference (FOIS’98), June 6-8, Trento, Italy, vol. 46. IOS press (1998)

15. ISO/IEC/IEEE: ISO/IEC/IEEE 24765:2017 - Systems and software engineering –
Vocabulary (Sep 2017), available at: https://www.iso.org/standard/71952.html

16. Jurisica, I., Mylopoulos, J., Yu, E.: Ontologies for knowledge management: an
information systems perspective. Knowledge and Information systems 6, 380–401
(2004)

17. Kadakolmath, L., Ramu, U.D.: istar goal model to z formal model translation and
model checking of cbtc moving block interlocking system. Form. Asp. Comput.
36(1) (2024)



10 R. Ramalho, J. França

18. van Lamsweerde, A.: Requirements Engineering. Wiley (2009)
19. Lewellen, S.: A comprehensive approach to identifying key stakeholders in compli-

cated software ecosystems. In: 2021 IEEE 29th International Requirements Engi-
neering Conference (RE). pp. 492–497 (2021)

20. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview.
W3C recommendation 10(10), 2004 (2004)

21. Munir, K., Anjum, M.S.: The use of ontologies for effective knowledge modelling
and information retrieval. Applied Computing and Informatics 14(2), 116–126
(2018)

22. Murtazina, M.S., Avdeenko, T.: An ontology-based approach to support for require-
ments traceability in agile development. Procedia Computer Science 150, 628–635
(2019)

23. Rothman, J.: What does it cost you to fix a defect? and why should you care.
Retrieved March 13, 2010 (2000)

24. Singh, Y., Gosain, A., Kumar, M.: From early requirements to late requirements
modeling for a data warehouse. In: 2009 Fifth International Joint Conference on
INC, IMS and IDC. pp. 798–804 (2009)

25. Soares, A.: Towards Ontology-Driven Information Systems: Guidelines to the Cre-
ation of New Methodologies to Build Ontologies. Ph.D. thesis, The Pennsylvania
State University (2009)

26. Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A., Shah, S.M.A.,
Bajwa, S.S., Baltes, G.H., Conboy, K., Cullina, E., Dennehy, D., et al.: Software
startups–a research agenda. arXiv preprint arXiv:2308.12816 (2023)

27. Vazquez, C.E., Simões, G.S.: Engenharia de Requisitos: software orientado ao negó-
cio. Brasport (2016)

28. Vingerhoets, A., Heng, S., Wautelet, Y.: Using i* and uml for blockchain oriented
software engineering: Strengths,weaknesses, lacks and complementarity. Complex
Systems Informatics and Modeling Quarterly 0, 26–45 (2021)

29. Wand, Y., Weber, R.: Research commentary: information systems and conceptual
modeling—a research agenda. Information systems research 13(4), 363–376 (2002)

30. Young, R.R.: Effective requirements practices. Addison-Wesley Longman Publish-
ing Co., Inc., USA (2001)

31. Yu, E., Mylopoulos, J.: Understanding why in requirements engineering–with an
example. In: Workshop on System Requirements: Analysis, Management, and Ex-
ploitation. pp. 4–7 (1994)

32. Yu, E.: Towards modeling and reasoning support for early-phase requirements en-
gineering. Proceedings of the IEEE International Conference on Requirements En-
gineering pp. 226 – 235 (1997)


